TAYLOR ENGINEERING, INC.

Jupiter Inlet Sediment Budget Update TAC Meeting #3

Ashley Kauppila, PE Ken Craig, PE 3/27/2024

Taylor Engineering | 1

Overview

- Background & Project Goals
- Prior Studies
- Data Collection
- Longshore Transport Modeling
- Sediment Budget Update
- Recommendations
- Next Steps

Background

- Update sediment budget at Jupiter Inlet
- Sediment budget supports Inlet Management Plan
- Develop longshore transport (LST) model for sediment budget update
- Previous studies applied USACE 1966 LST estimate
 - > 230,000 cy/year
 - Revisit LST with more recent wave conditions and numerical modeling

Prior Studies

Data Collection

- Topographic/bathymetric survey
 - February—April 2023
 - > Beach profiles, ebb shoal, inlet
- Sediment samples
 - > 72 grab samples for sieve analysis
 - Fine to medium-grained sand with varying amounts of shell and shell hash
 - > 8 R-monuments
 - > +10 ft to -30 ft-NAVD at 5 ft intervals
- Geodatabase

Longshore Transport Modeling

- Introduction
- MIKE Littoral Processes (LP) model
- Model Setup
- Sensitivity Testing
- Validation
- Production Run Results

Introduction

- Longshore transport (LST) rates constrain sediment budget equations
- Update LST rates with numerical model
 > Input wave climate from recent decades
- MIKE LP model propagates offshore waves along a cross-shore transect
 - > Shoaling, refraction, breaking
 - > Applies resulting wave-induced currents and setup to calculate sediment transport

Cross-shore Profile

Introduction

- MIKE LP model calculates southward and northward directed LST
- Gross LST = N + S
 50 + 300 = 350 cy
- Net southward LST = S − N
 > 300 − 50 = 250 cy
- Net transport is directed southward within entire project area

MIKE Littoral Processes Model

- Transect-based 1D model
 - No cross-shore transport, hardbottom, or morphodynamics
 - Study focuses on background longshore transport rates
- High computational efficiency
- Capture range of regional transport rates
 - > Significant annual variability

Model Setup – Extents and Resolution

- Alongshore extents
 - > 4.5 miles to north and 4.5 miles to south of the inlet
 - Martin County R-112 through Palm Beach County (PBC) R-36
 - > Model all R-monuments except within inlet shadow
 - PBC R-8 through R-20
- Cross-shore profile (transect) layout
 - > 800 points per profile
 - > 10 ft point spacing
 - > 60 ft depth contour

- Noticed that some R-monument azimuths not oriented to shore perpendicular
- Projected all survey data to comply with MIKE LP model requirement

Taylor Engineering | 14

Model Setup – Sediment Properties

Full particle size distribution curve at each sample
 > 9 samples per included R-monument

Model Setup – Sediment Properties

> Spatially variable D_{50} and grading coefficient $(D_{84}/D_{16})^{1/2}$

Taylor Engineering | 17

Model Setup – Sediment Properties

Model Setup – Input Data

- Bathymetry
 - > Beach transect surveys
 - Post-hurricane bathymetric LiDAR
 - South FL FEMA Coastal FIS bathymetry applied offshore of beach transect surveys
- Hourly water levels
 - Lake Worth Pier NOAA tide gage
 - Trident Pier NOAA tide gage to fill gaps in record (adjusted tide amplitude)
- Hourly offshore wave conditions
 - > USACE WIS hindcasts
 - Ft. Pierce NOAA NDBC buoy data to fill gaps in record

Sensitivity testing

- Bed roughness
- Sediment properties
- Wave model and parameters
 - > Rayleigh vs. Battjes & Janssen (B&J)
 - > B&J depth- and steepness-limited breaking
- Azimuth shift

Bed Roughness Sensitivity

Net Southward Littoral Drift, May 2018 – May 2019 (Martin County)

Sediment Properties Sensitivity Test

SPITER INLET D.

Net Southward Littoral Drift, May 2018 – May 2019 (Martin County) 300,000 -Spatially Variable Constant 250,000 200,000 Littoral Drift, cy 150,000 100,000 Constant $D_{50} = 0.6 \text{ mm}$ 50,000 Constant grad coef = 1.5 0 × \times \times × \times \times \times \times R-112 R-114 R-116 R-118 R-120 R-122 R-124 R-126

Wave Model Settings Sensitivity

Run	Wave Model	Dissipation Rate (default=1)	Depth-Limited Breaking (default=0.8)	Steepness- Limited Breaking (default=1)
Α	Rayleigh	N/A	N/A	N/A
В	Battjes & Janssen	1	0.8	1
С	Battjes & Janssen	1	0.7	1
D	Battjes & Janssen	0.7	0.7	1
E	Battjes & Janssen	1	0.7	0.7

Wave Model Settings Sensitivity

Azimuth Shift Sensitivity

Validation

- Compare modeled vs. measured data to establish model skill
- No directly measured LST available
 - \succ Compare spatial gradient in LST \rightarrow volume change
- Beach survey data clipped at offshore edge of littoral zone established by model results
 - Limit uncertainty in instrument vertical control
- Does the model reproduce alongshore volume change trends?

Validation

Validation

- Date selection considerations
 - Survey availability
 - > Moderate wave energy
 - > Avoid large nourishment events
- May 2016 to November 2016 Hurricane Matthew
 Martin and PBC
- May 2018 to May 2019
 - Martin only
- July 2019 to December 2019 Hurricane Dorian
 > PBC only

Volume Change at Each R-monument

Cumulative Alongshore Volume Change

Validation Results – May 2018 to May 2019

Validation Results – May 2018 to May 2019

Cumulative Alongshore Volume Change

Validation Results – Jul to Oct 2019

Volume Change at Each R-monument

Validation Results – Jul to Oct 2019

Production Runs

- Model LST from January 1, 1997—June 30, 2023
 > Jetty extension work completed in 1997
- Apply full calendar year results (1997—2022) for:
 - > Annual average
 - Standard deviation
- Update bathymetry every ~5 years
 - > Exact dates dependent on data availability

Production Run Dates

Production Run Results

SHIER INLET DIS.

Production Run Results (no 2004)

Production Run Results

SHIER INLET D,

Production Run Results – 1997 through 2022

Average and Standard Deviation of Annual Net Southward Littoral Drift

R-monument	Average (cy/yr)	Standard Deviation (cy/yr)	Average Without 2004 (cy/yr)	Standard Dev Without 2004 (cy/yr)
MC R-112	380,562	356,789	316,231	143,240
MC R-121	366,466	233,372	330,731	148,821
PBC R-1	322,406	148,430	300,565	100,152
PBC R-8	275,651	128,970	254,968	75,762
PBC R-20	336,498	167,376	310,901	106,939
PBC R-28	381,580	323,069	321,251	100,749
PBC R-36	320,248	233,318	279,631	109,661

Production Run Results – 1997 through 2022

Modeled results relatively close to 1966 estimate!

Dalm Baach County D. 9	Transport	Annual Littoral Drift (Q), cy/yr		
Pailli Beach County R-8	Transport	Average	Standard Deviation	
USACE 1966	Net	230,000	90,000	
MIKE LP Model, 1997-2022	Net	276,000	129,000	
MIKE LP Model, 1997-2022	Gross	394,000	141,000	

Production Run Results – 1997 through 2022

SHER INLET DI

Sediment Budget

- Introduction
- Conceptual Model
- Input Data
- Results
 - September 2001—February 2023
 - > July 2014—February 2023
- Average Annual Results
- Conclusions & Recommendations

Sediment Budget – Introduction

- Sediment budget guides decision-making related to managing the inlet and adjacent beaches
 - Requires accurate longshore transport rates
- Sediment budget update goals
 - > How much sediment entering the inlet?
 - > Offshore losses along the beaches?
 - > Adequate annual bypassing?

Sediment Budget – Introduction

 Mass balance of sediment sources and sinks applied within a control volume or *littoral cell*

•
$$\sum Q_{in} - \sum Q_{out} + P - R = \Delta V$$

- Q = sediment transport
- P = placement (beach nourishment)
- R = removal (dredging)
- $> \Delta V =$ volume change

Sediment Budget – Introduction

•
$$\sum Q_{in} - \sum Q_{out} + P - R = \Delta V$$

- Typically...
 - > P, R, ΔV known
 - Solve for an unknown Q term
- If solving for unknown term:

 $\geq \sum Q_{in} - \sum Q_{out} + P - R - \Delta V = residual$

Q_{offshore} represents residual

Conceptual Model Setup

- Visual representation of control volumes
- Depth of closure guides delineation of littoral cells
 - Seaward edge of expected sediment movement
- Data availability guides selection of timeframes

Conceptual Model Setup

- Examine two timeframes
 - Sep 2001 Feb 2023
 - Jul 2014 Feb 2023
- Group R-monuments by depth of closure

Littoral Cell	Seaward Boundary (ft-NAVD)
North Beach 1	-30
North Beach 2	-35
Offshore	-35
South Beach 1	-30
South Beach 2	-35

Conceptual Model Setup

- Inputs:
 - > Q longshore from model
 - Beach nourishment records
 - Bypassing records
 - Surveyed volume change
- Assumption:
 - > 4k cy/yr "lost" inside inlet
- Calculate:
 - > Q into Inlet cell
 - > Q between Nearshore/Offshore cells
 - > Q offshore losses/gains

Cell Boundary

Inlet Littoral Cell

- Q_{out} = ∑ICWW bypassed + (4,000 cy/yr * number of years)
- $Q_{in} = Q_{out} + R + \Delta V$

Inlet Littoral Cell

Nearshore Littoral Cell

- Q_{in} from Inlet littoral cell calculation
- Solve for Q_{Nearshore}
- Coefficient a from cross-shore distribution of LST

Offshore Littoral Cell

- Q_{Nearshore} becomes an input term
- Solve for Q_{Offshore}
- Coefficient b from cross-shore distribution of LST

Littoral Cell	Alongshore	Gains (+) or Losses (–) Across Seaward Edge (cy per linear ft per year)		
		Sep 2001 – Feb 2023	Jul 2014 – Feb 2023	
North Beach 1	7,928	-2.5	3.6	
North Beach 2	11,715	-15.7	-12.8	
Nearshore	11,441	1.9	4.8	
Offshore	11,441	-0.4	13.4	
South Beach 1	8,495	-4.2	-9.8	
South Beach 2	8,419	-20.4	-6.6	

Persistent offshore losses:	North Beach 2 (Martin R-121 to PBC R-8)
	South Beach 1 (PBC R-20 to R-28)
	South Beach 2 (PBC R-28 to R-36)

Littoral Cell	Alongshore	Gains (+) or Losses (–) Across Seaward Edge (cy per linear ft per year)		
		Sep 2001 – Feb 2023	Jul 2014 – Feb 2023	
North Beach 1	7,928	-2.5	3.6	
North Beach 2	11,715	-15.7	-12.8	
Nearshore	11,441	1.9	4.8	
Offshore	11,441	-0.4	13.4	
South Beach 1	8,495	-4.2	-9.8	
South Beach 2	8,419	-20.4	-6.6	

Minor gains from Offshore cell to Nearshore cell (PBC R-8 to R-20)

Littoral Cell	Alongshore	Gains (+) or Losses (–) Across Seaward Edge (cy per linear ft per year)		
		Sep 2001 – Feb 2023	Jul 2014 – Feb 2023	
North Beach 1	7,928	-2.5	3.6	
North Beach 2	11,715	-15.7	-12.8	
Nearshore	11,441	1.9	4.8	
Offshore	11,441	-0.4	13.4	
South Beach 1	8,495	-4.2	-9.8	
South Beach 2	8,419	-20.4	-6.6	

Post-2014 significant recovery in Offshore (PBC R-8 to R-20)

Littoral Cell	Alongshore	Gains (+) or Losses (–) Across Seaward Edge (cy per linear ft per year)		
		Sep 2001 – Feb 2023	Jul 2014 – Feb 2023	
North Beach 1	7,928	-2.5	3.6	
North Beach 2	11,715	-15.7	-12.8	
Nearshore	11,441	1.9	4.8	
Offshore	11,441	-0.4	13.4	
South Beach 1	8,495	-4.2	-9.8	
South Beach 2	8,419	-20.4	-6.6	

Dr. David Kriebel 2020 – Jupiter Island

Independent Evidence of Offshore Losses

- GBA surveys for Town of Jupiter Island
 Different dates, monuments, and surveyor
- Plot elevation change from 2001-2014
 - Blue shading is loss of elevation
 - Typical loss offshore is 1 to 2 ft
- · Odroniec (2006) UF Masters Thesis
 - Noted lack of closure and offshore losses
 - Computed std dev in FDEP profiles
 - · Found minimum std dev at 13 ft depth
- Beach profile data shows:
 - Most losses in depths greater than 13 ft
 - Most gains from monument to -13 ft

*We see the same "profile deflation" 2001-2014 with recovery at some R-monuments post-2014

Taylor Engineering | 63

Beach Transect Surveys at PBC R-15 (Nearshore and Offshore littoral cells)

Dr. David Kriebel 2020 – Jupiter Island

Family of Solutions for Island-Wide Sediment Budget

Use IMP's to narrow range of values

Option #1 adopting values from adjacent IMP's cannot be ruled out

Conclude that there must be large offshore volume losses!

*500k cy ~ 8 cy/linear ft found by JI \rightarrow similar to our results

Taylor Engineering | 66

Source	Dates	R-8 Net Q Southward (cy/yr)	Net Q Into Inlet (cy/yr)	Percent of R-8 Q into Inlet
JID 2024	Sep 2001 - Feb 2023	289,993	85,046	29%
JID 2024	Jul 2014 - Feb 2023	257,309	79,890	31%
Mehta et al. 2007	1993-1998	230,000	75,900	33%

Source	Dates	R-8 Gross Q (cy/yr)	Net Q Into Inlet (cy/yr)	Percent of R-8 Q into Inlet
JID 2024	Sep 2001 - Feb 2023	409,436	85,046	21%
JID 2024	Jul 2014 - Feb 2023	391,493	79,890	20%

- Sensitivity tests for several input terms show limited impact on calculated offshore gains/losses
 - > Modeled longshore $\sum Q_{in} \sum Q_{out}$
 - 90%
 - **110%**
 - Distribution of modeled Q to Nearshore vs. Offshore littoral cells
 - **75%:25%**
 - **90%:10%**
 - Losses within inlet complex
 - 7,000 cy/yr
 - 10,000 cy/yr

Annual Dredged Volume, cy

USACE 1966

Taylor Engineering | 71

SPITER INLET DIS

Mehta et al. 1992

DISTRIBUTION OF ANNUAL NET SOUTHWARD DRIFT

Sharma/Mehta 2007

Figure 4.8 Components of eastern zone JID sand budget for 1993-199

Note: 76k cy (58k m³) represents net transport

1993-98 Volumes in 1,000 m³

e 4.10 Annual sand transport rates in the eastern zone for 1993-19	98 JID cand budget
Transport from/to	Volumetric
	rata
	rate
	(m³/yr)
Net southward littoral drift (Q_{net}) 230k cy	176,000
Entering the channel from littoral drift (Q_i) 76k cy	58,000
Bar-bypassed around the inlet (Q_s)	111,000
Volumetric rate of sand accumulation in the ICWW (V_{ic})	14,000
Volumetric rate of sand accumulation in the trap (V_{st})	41,000
Tidally bypassed by entering and then leaving the channel	5,000
(Q _{is})	
Ejected from the channel to offshore by ebb flow (Q_i)	7,000
Transported to ICWW channels north and south of	2,000
$inlet(Q_{ic})$	
Transported to Central Embayment(Q_c)	1,000
Beach volume change rate downdrift of inlet (V_{dd})	4,000

Note: 87k cy represents net transport into inlet

Taylor Engineering | 74
Historical Comparison

Transport Component (Volumes in 1,000 cy)	USACE 1966	Mehta et al. 1992	Sharma 2007 (1974- 1986)	Sharma 2007 (1986- 2002)	Mehta et al. 2007 (1993- 1998)	Sharma 2007 (1998- 2006)	JID 2024 (1997- 2022)
Entering inlet (net)	50	50	73	70	76	79	87
Deposited in sand trap	30	30	42	44	54	52	54
Deposited in ICWW channel	17	13	27	22	18	24	29
Deposited in inlet complex	3	7	4	4	4	4	4*

*transport component applied from Mehta et al. 2007

Conclusions

- MIKE LP model and historical data analysis allowed for successful sediment budget update
 - > Net southward Q at R-8 similar to prior estimate
 - > Net percent Q into inlet similar to Mehta et al. 2007
- Nearshore/Offshore littoral cells show gains since 2014
 - Cross-shore distribution of sand not necessarily ideal

Conclusions

- Inlet littoral cell
 - ~30% of net southward Q and ~20% of gross Q deposits inside inlet complex
- Most beach littoral cells north and south of inlet show persistent offshore losses
 - Dr. Kriebel 2020 results for Jupiter Island (2001— 2014) agree
 - Reports of "profile deflation" throughout east coast of Florida

Surveying Recommendations

- Ebb shoal
- Include PBC R-1 through R-12 in beach surveys
- Extend beach transect surveys farther offshore
 ~6,000 ft
- When possible, collect beach, sand trap, and ebb shoal surveys within the same season
- Adjust R-monument azimuths

Next Steps

- Draft report
- Ebb shoal migration study
- Riverine study
- Updates to Inlet Management Plan

THANK YOU Questions?

